The need for self-driving unmanned vehicles has increased in many sectors such as industry, health sector, defense industry, where the use of manpower is dangerous or impossible. Unmanned underwater vehicles are underwater robots that can perform various underwater tasks without the need for any operators on them. They can be equipped to play a more active role in tasks with tools such as a robotic arm, camera. Depending on the task, the success rate of the task can be increased by achieving precise results together with the sensors installed in the vehicle. However, all unmanned underwater vehicles, regardless of their autonomous level, play an important role for countries ‘ underwater missions. One of the most important systems of unmanned underwater vehicles is the propulsion system. Propeller systems, on the other hand, are an important element of the propulsion system that is used in the dispatch of underwater and above-water vehicles. It may have different qualities depending on the area of use. The propeller used is very important for its tasks to be applicable at the desired performance and to reduce fuel consumption, as well as to ensure a controlled course. In this thesis, the free vibration frequency of the unmanned underwater vehicle propeller, which is the propulsion system element, will be investigated. And the possibility of experiencing resonance during the study will be examined. Manufactured in PLA material, the propeller was subjected to a pre-stress in the structural analysis module of the ANSYS program, taking into account the maximum operating speed. Then, in the modal module, the frequency of vibration consisting of the working cycle was compared with the frequency of free vibration and the resonance state was examined.
Prepared by Talha Gulgun, Ismail Yalcinkaya, Mertcan Erdogdu, Akif Durdu